Fall 2013CLA+Cross-Sectional Results

University of North Carolina Pembroke

TABLE OF CONTENTS

Your Results

1	Summary Results, by Class	p. 2
$\mathbf{2}$	Distribution of Mastery Levels	p. 3
3	Value-Added Estimates	p. 4
4	CLA+Subscores	p. 5
5	Student Effort and Engagement	p. 6
6	Student Sample Summary	p. 7

Appendices

A	Introduction to CLA+	p. 8
B	Methods	p. 9
C	Explanation of Your Results	p. 11
D	Results across CLA+ Institutions	p. 15
E	Institutional Sample	p. 20
F	CLA+ Tasks	p. 24
G	Scoring CLA+	p. 27
H	Mastery Levels	p. 29
I	Diagnostic Guidance	p. 31
J	Scaling Procedures	p. 33
K	Modeling Details	p. 35
L	Percentile Lookup Tables	p. 39
M	Student Data File	p. 40
N	Moving Forward	p. 41
O	CAE Board of Trustees and Officers	p. 42

SECTION 1: SUMMARY RESULTS, BY CLASS

Number of Students Tested, by Class
Freshmen: 196 Sophomores: N/A Juniors: N/A Seniors: .N/A

Summary CLA+ Results, by Class						
			$25^{\text {TH }}$	$75^{\text {TH }}$	MEAN SCORE	EFFECT
		MEAN SCORE	PERCENTILE SCORE	PERCENTILE SCORE	PERCENTILE RANK	SIZE V. FRESHMEN
TOTAL CLA+ SCORE	Freshmen	1010	913	1098	48	--
	Sophomores	N/A	N/A	N/A	N/A	N/A
	J uniors	N/A	N/A	N/A	N/A	N/A
	Seniors	N/A	N/A	N/A	N/A	N/A
PERFORMANCE TASK	Freshmen	987	875	1084	37	--
	Sophomores	N/A	N/A	N/A	N/A	N/A
	J uniors	N/A	N/A	N/A	N/A	N/A
	Seniors	N/A	N/A	N/A	N/A	N/A
SELECTEDRESPONSE QUESTIONS	Freshmen	1032	913	1143	56	--
	Sophomores	N/A	N/A	N/A	N/A	N/A
	J uniors	N/A	N/A	N/A	N/A	N/A
	Seniors	N/A	N/A	N/A	N/A	N/A
ENTERING ACADEMIC ABILITY	Freshmen	971	890	1030	34	--
	Sophomores	N/A	N/A	N/A	N/A	--
	J uniors	N/A	N/A	N/A	N/A	--
	Seniors	N/A	N/A	N/A	N/A	--
University of North Carolina Pembroke has a senior Total CLA+ score of N/A and percentile rank of N/A. The corresponding Mastery Level for this score is N/A.						

SECTION 2: DISTRIBUTION OF MASTERY LEVELS

Distribution of CLA+ Scores, by Mastery Level

Mastery Levels, by Class							
	MEAN TOTALCLA+	MEAN MASTERY	PERCENT BELOW BASIC	PERCENT BASIC	PERCENT PROFICIENT	PERCENT ADVANCED	
SRESHMEN	1010	Basic	40	34	26	1	
SOPHOMORES	N/A	N/A	N/A	N/A	N/A	N/A	
JUNIORS	N/A	N/A	N/A	N/A	N/A	N/A	
SENIORS	N/A	N/A	N/A	N/A	N/A	N/A	

SECTION 3: VALUE-ADDEDESTIMATES

	EXPECTED	ACTUAL
	SENIOR MEAN	SENIOR MEAN
Total CLA+ Score	CLA+ SCORE	CLA+ SCORE
Performance Task	N / A	N / A
Selected-Response Questions	N / A	N / A

	VALUE-ADDED	PERFORMANCE	PERCENTILE	CONFIDENCE INTERVAL BOUNDS	
	SCORE	LEVEL	RANK	LOWER	UPPER
Total CLA+ Score	N/A	N/A	N/A	N/A	N/A
Performance Task	N / A				
Selected- Response Questions	N / A				

Expected vs. Observed CLA+ Scores

SECTION 4: CLA+SUBSCORES

NOTE: The Performance Task subscore categories are scored on a scale of 1 through 6.

Selected-Response Questions: Mean Subscores

	SCIENTIFIC \& QUANTITATIVE REASONING			CRITICAL READING \& EVALUATION			CRITIQUE AN ARGUMENT		
		$25^{\text {th }}$	$75^{\text {th }}$		$25^{\text {th }}$	$75^{\text {th }}$		$25^{\text {th }}$	$75^{\text {th }}$
	Mean Score	Percentile Score	Percentile Score	Mean Score	Percentile Score	Percentile Score	Mean Score	Percentile Score	Percentile Score
FRESHMEN	500	429	572	493	413	568	499	388	596
SOPHOMORES	N/A								
J UNIORS	N/A								
SENIORS	N/A								

NOTE: The selected-response section subscores are reported on a scale ranging approximately from 200 to 800.

SECTION 5: STUDENTEFFORT AND ENGAGEMENT

Student Effort and Engagement Survey Responses

How much effort did you put into the written-response task/ selected-response questions?

		NO EFFORT AT ALL	A Little EFFORT	A MODERATE AMOUNT OF EFFORT	A LOT OF EFFORT	MY BEST EFFORT
PERFORMANCE TASK	Freshmen	2\%	6\%	30\%	26\%	36\%
	Sophomores	N/A	N/A	N/A	N/A	N/A
	J uniors	N/A	N/A	N/A	N/A	N/A
	Seniors	N/A	N/A	N/A	N/A	N/A
SELECTEDRESPONSE QUESTIONS	Freshmen	2\%	9\%	34\%	31\%	24\%
	Sophomores	N/A	N/A	N/A	N/A	N/A
	J uniors	N/A	N/A	N/A	N/A	N/A
	Seniors	N/A	N/A	N/A	N/A	N/A

How engaging did you find the written-response task/ selected-response questions?

		NOT AT ALL ENGAGING	SLIGHTLY ENGAGING	MODERATELY ENGAGING	VERY ENGAGING	EXTREMELY ENGAGING
PERFORMANCE TASK	Freshmen	6\%	16\%	31\%	35\%	12\%
	Sophomores	N/A	N/A	N/A	N/A	N/A
	J uniors	N/A	N/A	N/A	N/A	N/A
	Seniors	N/A	N/A	N/A	N/A	N/A
SELECTEDRESPONSE QUESTIONS	Freshmen	8\%	23\%	38\%	23\%	7\%
	Sophomores	N/A	N/A	N/A	N/A	N/A
	J uniors	N/A	N/A	N/A	N/A	N/A
	Seniors	N/A	N/A	N/A	N/A	N/A

SECTION 6: STUDENT SAMPLE SUMMARY

Student Sample Summary									
		FRES	MEN	SOPH	MORES	JUNI		SENIO	
DEMOGRAPHIC CHARACTERISTIC		N	\%	N	\%	N	\%	N	\%
TRANSFER	Transfer Students	--	--	N/A	N/A	N/A	N/A	N/A	N/A
	Non-Transfer Students	--	--	N/A	N/A	N/A	N/A	N/A	N/A
GENDER	Male	53	27\%	N/A	N/A	N/A	N/A	N/A	N/A
	Female	142	72\%	N/A	N/A	N/A	N/A	N/A	N/A
	Decline to State	1	1\%	N/A	N/A	N/A	N/A	N/A	N/A
PRIMARY LANGUAGE	English	180	92\%	N/A	N/A	N/A	N/A	N/A	N/A
	Other	16	8\%	N/A	N/A	N/A	N/A	N/A	N/A
FIELD OF STUDY	Sciences \& Engineering	50	26\%	N/A	N/A	N/A	N/A	N/A	N/A
	Social Sciences	16	8\%	N/A	N/A	N/A	N/A	N/A	N/A
	Humanities \& Languages	10	5\%	N/A	N/A	N/A	N/A	N/A	N/A
	Business	18	9\%	N/A	N/A	N/A	N/A	N/A	N/A
	Helping / Services	81	41\%	N/A	N/A	N/A	N/A	N/A	N/A
	Undecided / Other / N/A	21	11\%	N/A	N/A	N/A	N/A	N/A	N/A
RACE/ ETHNICITY	American Indian / Alaska Native / Indigenous Asian (including Indian subcontinent and Philippines) Native Hawaiian or other Pacific Islander African-American / Black (including African and Caribbean), non-Hispanic Hispanic or Latino	18	9\%	N/A	N/A	N/A	N/A	N/A	N/A
		7	4\%	N/A	N/A	N/A	N/A	N/A	N/A
		1	1\%	N/A	N/A	N/A	N/A	N/A	N/A
		64	33\%	N/A	N/A	N/A	N/A	N/A	N/A
		15	8\%	N/A	N/A	N/A	N/A	N/A	N/A
	White (including Middle Eastern), non-Hispanic	76	39\%	N/A	N/A	N/A	N/A	N/A	N/A
	Other	9	5\%	N/A	N/A	N/A	N/A	N/A	N/A
	Decline to State	6	3\%	N/A	N/A	N/A	N/A	N/A	N/A
PARENT EDUCATION	Less than High School	7	4\%	N/A	N/A	N/A	N/A	N/A	N/A
	High School	39	20\%	N/A	N/A	N/A	N/A	N/A	N/A
	Some College	77	39\%	N/A	N/A	N/A	N/A	N/A	N/A
	Bachelor's Degree	45	23\%	N/A	N/A	N/A	N/A	N/A	N/A
	Graduate or Post-Graduate Degree	28	14\%	N/A	N/A	N/A	N/A	N/A	N/A

APPENDIX A: INTRODUCTION TO CLA+

INTRODUCTION TOCLA+

The Collegiate Learning Assessment (CLA) was introduced in 2002 as a major initiative of the Council for Aid to Education (CAE). In the decade since its launch, the CLA has offered a value-added, constructed-response approach to the assessment of higher-order skills, such as critical thinking and written communication. Hundreds of institutions and hundreds of thousands of students have participated in the CLA to date.

Initially, the CLA focused primarily on providing institutions with estimates of their contributions, or value added, to their students' development of higher-order skills. As such, the institution - not the student-was the primary unit of analysis.

In 2013, CAE introduced an enhanced version of the CLA-CLA+-that provides utility and reliability at the individual student, as well as at the institutional, level. CLA+ also includes new subscores for quantitative and scientific reasoning, critical reading and evaluation, and critiquing an argument. New Mastery Levels provide criterion-referenced results that indicate the level of proficiency attained by an institution's students on the higher-order skills measured by CLA+.

When taking CLA+, students complete both a Performance Task (PT) and a series of SelectedResponse Questions (SRQs).

The Performance Task presents a real-world situation in which an issue, problem, or conflict is identified. Students are asked to assume a relevant role to address the issue, suggest a solution, or recommend a course of action based on the information provided in a Document Library. A full CLA+ Performance Task contains four to nine documents in the library, and students have 60 minutes to complete the task. The Document Library contains a variety of reference sources such as technical reports, data tables, newspaper articles, office memoranda, and emails.

In the Selected-Response Questions section, students respond to 25 questions: 10 assess scientific and quantitative reasoning; 10 assess critical reading and evaluation; and five assess the students' ability to critique an argument by detecting
logical flaws and questionable assumptions in a given argument. Students have 30 minutes to complete this section. Much like the Performance Task, each set of questions is document-based and requires that students draw information from the accompanying documents.

CLA+ is intended to assist faculty, school administrators, and others interested in programmatic change to improve teaching and learning, particularly with respect to strengthening higher-order skills.

Additionally, CLA+ results allow for direct, formative feedback to students. Faculty may also decide to use students' CLA+ results to make individualized decisions about grading, scholarships, admission, or placement, and students may choose to share their results with potential employers or graduate schools as evidence of the skills they have acquired at their college or university. Institutions may also wish to use CLA+ results to provide independent corroboration of competency-based learning, or to recognize individual students who exhibit the higherorder skills required for twenty-first century careers.

CLA+ helps institutions follow a continuous improvement model that positions faculty as central actors in the link between assessment and the teaching and learning process. While no single test can serve as the benchmark for all student learning in higher education, there are certain skills deemed important by most faculty and administrators across virtually all institutions; indeed the higher-order skills that CLA+ measures fall into this category.

CLA+ is significant because institutions need to have a frame of reference for where they stand and how much progress their students have made relative to the progress of students at other colleges. Yet, CLA+ is not about ranking institutions. Rather, it is about highlighting differences between them that can lead to improvements. Similarly, CLA+ is not about ranking students, but highlighting areas where individual students have excelled or may need to focus more efforts. CLA+ is an instrument designed to contribute directly to the improvement of teaching and learning. In this respect, it is in a league of its own.

APPENDIX B: METHODS

CLA+ METHODOLOGY

CLA+ uses innovative tasks and question sets to evaluate students' performance reflecting the following higher-order skills: analysis and problem solving, writing effectiveness, and writing mechanics on the PTs; and scientific and quantitative reasoning, critical reading and evaluation, and detecting logical flaws and questionable assumptions to critique arguments on the SRQs.

CLA+ measures these skills by giving students one PT and a set of 25 SRQs. Students have 90 minutes to complete the assessment-60 minutes for the PT and 30 minutes for the SRQs.

Results are provided to institutions after they have completed testing in each window. Your institutional report presents information on each section of CLA+ and total CLA+ performance for all freshmen that test in the fall window, and all sophomores, juniors, or seniors that test in the spring window. This includes a PT score, a SRQ score, and a Total CLA+ score. The PT and SRQ scores represent the average performance of your students that completed the respective sections. Total CLA+ scores are equal to the average of the PT and SRQ scores.

Performance Task scores are equal to the sum of the three PT subscore categories-Analysis and Problem Solving, Writing Effectiveness, and Writing Mechanics-converted to a common scale. Selected-Response Question scores are equal to the sum of the three SRQ raw subscores - Scientific and Quantitative Reasoning, Critical Reading and Evaluation, and Critique an Argument-also converted to a common scale. For more information about the scaling process, please see the Scaling Procedures section of this report (AppendixJ).

The information presented in your results includes means (averages) and 25th and 75th percentile scores (the score values between which half of your students scored on CLA+), and a percentile ranking for your mean score. Note that percentile rankings are compared to other institutions testing the same class level in the same window; these statistics may not be available, depending on the sample of institutions that have tested accordingly.

CAE reports also include growth estimates for those class levels tested. These growth estimates are provided in two forms: effect sizes and value-added scores.

Effect sizes represent the amount of growth seen from freshman year, in standard deviation units. They are calculated by subtracting the mean freshman performance at your school from the mean of your sophomore, junior, or senior performance, and dividing by the standard deviation of your freshman scores. Effect sizes do not take into account the performance of students at other CLA+ institutions.

Value-added scores, on the other hand, are used to estimate growth from freshman to senior year, relative to that seen across institutions. Value-added modeling is often viewed as an equitable way of estimating an institution's contribution to learning. Simply comparing average achievement of all schools tends to paint selective institutions in a favorable light and discount the educational efficacy of schools admitting students from weaker academic backgrounds. Value-added modeling addresses this issue by providing scores that can be interpreted as relative to institutions testing students of similar entering academic ability. This allows all schools, not just selective ones, to demonstrate their relative educational efficiency.

CLA+ value-added estimation approach employs a statistical technique known as hierarchical linear modeling (HLM). Under this methodology, a school's value-added score indicates the degree to which the observed senior mean CLA+ score meets, exceeds, or falls below expectations established by (1) seniors' Entering Academic Ability (EAA) ${ }^{1}$ scores, and (2) the mean CLA+ performance of freshmen at that school, which serves as a control for selection effects not covered by EAA. Only students with EAA scores are included in institutional analyses.

When the average performance of seniors at a school is substantially better than expected, this school is said to have high "value added." To illustrate, consider several schools admitting students with similar average performance on general academic ability tests (e.g., the SAT or ACT) and on tests of higher-order skills (e.g., CLA+). If, after four years of college education, the seniors at one school perform

[^0]better on CLA+ than is typical for schools admitting similar students, one can infer that greater gains in critical thinking and writing skills occurred at the highest performing school. Note that a low (negative) value- added score does not necessarily indicate that no gain occurred between freshman and senior year; however, it does suggest that the gain was lower than would typically be observed at schools testing students of similar EAA. Value-added scores are placed on a standardized (z-score) scale and assigned performance levels. Schools that fall between -1.00 and +1.00 are classified as "near expected," between +1.00 and +2.00 are "above expected", between -1.00 and -2.00 are "below expected," above +2.00 are "well above expected," and below -2.00 are "well below expected." Valueadded estimates are also accompanied by confidence intervals, which provide information on the precision of the estimates; narrow confidence
intervals indicate that the estimate is more precise, while wider intervals indicate less precision.

In the past, CLA+ value-added models were recalculated after each academic year, allowing for the potential of fluctuation in results due to the sample of participating institutions rather than changes in actual growth within a college or university. The introduction of CLA+ also marks the first time that the value-added equation parameters will be fixed, which will facilitate reliable year-toyear comparisons of value-added scores.

Our analyses include results from all CLA+ institutions, regardless of sample size and sampling strategy. Therefore, we encourage you to apply due caution when interpreting your results if you tested a very small sample of students or believe that the students in your institution's sample are not representative of the larger student body.

APPENDIX C: EXPLANATION OF YOUR RESULTS

The following section provides guidance on interpreting institutional results. For all tables provided in your cross-sectional results, the sample of students reported here include freshmen who have tested in the fall window, and sophomores, juniors, and seniors who have tested in the spring window. To ensure that the results provided across the tables in your report use a consistent sample-in addition to testing in the appropriate window for a given class level-students also need to have (1) completed all sections of the assessment (the Performance Task, Selected-Response Questions, and the accompanying survey), they must (2) have a SAT, ACT, or SLE score submitted to CAE, and (3) not have otherwise been designated for exclusion from institutional analyses during the registrar data submission process.

Cross-CLA+ summary data are provided in the following section, Results Across CLA+ Institutions (Appendix D), for comparative purposes. The institutions included in that section-also used to determine your percentile rankings, and set the value-added model parameters-are described in Institutional Sample section of this report (Appendix E).

In addition to the details presented here, CAE also offers a series of results overview videos to guide institutions through interpreting and making use of their results. These videos will be available for CLA+ in March 2014, on our website at www.cae.org/cla-institutional-reporting.

SUMMARY RESULTS, BY CLASS (Section 1, page 2)

The first table in Section 1 of this report provides the Number of Students Tested, by Class. This includes the number of freshmen that were tested in the fall window and the number of sophomores, juniors, and seniors that were tested in the spring CLA+ window this academic year. These numbers indicate the sample size for each ensuing table or figure in your report. Please note that very small samples (e.g., fewer than 100 for any given class) should be interpreted with caution, as smaller sample sizes are less likely to provide reliable or representative results.

This table is followed by summary statistics for the students in your sample. For any class levels not tested or where results are not applicable, values of "N/A" are reported.

The Summary CLA+ Results, by Class table provides mean scores, quartiles, percentile ranks, and effect sizes for each class level tested and for each section of the test, as well as summary of your sample's EAA.

The Mean Score column represents the average score of the students included in the sample. This is also considered your institutional CLA+ score.

The 25th Percentile Score indicates the score value at or below which 25 percent of your students scored, and the 75th Percentile Score indicates the
score value at or below which 75 percent of your students scored. Accordingly, half (50\%) of the students in your sample scored between the 25th and 75 th percentile scores shown in the table.

The Mean Score Percentile Rank indicates how well your institution performed relative to other institutions across CLA+. The values in this column represent the percentage of institutions whose mean scores were lower than yours. If there is an insufficient sample of institutions testing at a corresponding class level, you will see the value " N / A " in the relevant cell of the table.

The final—Effect Size v. Freshmen—column in this table presents growth estimates in the form of school-specific effect sizes. Effect sizes indicate the standardized difference in CLA+ scores between entering students and those at each subsequent class level, using your school's standard deviation of entering students. An effect size of 0 indicates no difference between entering and exiting students, while positive effect sizes indicate scores that are higher than those of entering students, with larger effect sizes corresponding to larger score differences.

For a summary of institutional performance across CLA+, please refer to the Results Across CLA+ Institutions section of this report (Appendix D).

DISTRIBUTION OF MASTERY LEVELS (Section 2, page 3)

Section 2 of your institutional report focuses on Mastery Levels, which are new, criterion-referenced indicators of performance on CLA+. Mastery Levels are determined by an individual's Total CLA+ score on the student level, and by a sample's mean Total $C L A+$ score on the institutional level.

There are four Mastery Level categories for CLA+: Below Basic, Basic, Proficient, and Advanced. These categories, and the process through which the Mastery Levels were derived, are described in detail in the Mastery Levels section of your report (AppendixH).

There are two tables in your results that address your students' performance in terms of Mastery Levels. The first, Distribution of CLA+ Scores, by

Mastery Level, includes a histogram of Total CLA+ scores for each class level that you tested, overlaid with the Mastery Level score cut points to show how the distribution of CLA+ scores within your sample(s) corresponds to students' Mastery of the skills measured by CLA+.

The second table presents a summary of Mastery Levels, by Class. The first column of data lists the mean Total CLA+ score for each class level tested, followed by the corresponding Mastery Level - the level at which the average student within your sample performed. The next four columns present the percentage of students that performed at each Mastery Level within each class your institution tested.

VALUE-ADDED ESTIMATES (Section 3, page 4)

Section 3 of your institutional report presents estimates of the growth shown by your students from freshman to senior year, in the form of ValueAdded Estimates. Note that all tables in this section will read "N/A" in the fall 2013 CLA+ administration - at which point only freshmen have been tested-and in cases where schools test classes other than freshmen and seniors.

The first table provides your students' Expected Senior Mean CLA+ Score alongside their Actual Senior Mean CLA+ Score. Expected scores are determined by the typical performance of seniors at institutions testing similar samples of students, given their seniors' EAA and their mean freshman performance on CLA+.

The following table presents your value-added results. Your Value-Added Score represents the difference between an institution's Actual Senior Mean CLA+ Score and its Expected Senior Mean CLA+ score, converted to standard deviation units.

The value-added score for each section of CLA+ is accompanied by a Performance Level, which is determined by the specific value-added score received. Schools that fall between -1.00 and +1.00 are classified as "near expected," between +1.00 and +2.00 are "above expected", between -1.00 and -2.00 are "below expected," above +2.00 are "well above
expected," and below -2.00 are "well below expected."

In addition to Performance Levels, each value-added score is assigned a percentile rank. The percentile rank tells an institution the percentage of other institutions whose value-added scores would fall below its own value-added scores, if all the scores were ranked in order of their values.

Value-added estimates are also accompanied by confidence intervals, which provide information on the precision of the estimates; narrow confidence intervals indicate that the estimate is more precise, while wider intervals indicate less precision. Given the inherent uncertainty of value-added estimates, value-added scores should be interpreted in light of available information about their precision. HLM estimation - the method used by CAE for calculating value-added scores-provides standard errors for value-added scores, which can be used to compute a unique 95% confidence interval for each school. These standard errors reflect within- and betweenschool variation in CLA+ and EAA scores, and they are most strongly related to senior sample size. Schools testing larger samples of seniors obtain more precise estimates of value added and therefore have smaller standard errors and corresponding 95\% confidence intervals.

The final component of your value-added results is the scatterplot of Expected vs. Observed CLA+ scores. This figure shows the performance of all four-year colleges and universities, relative to their expected performance as predicted by the valueadded model. The vertical distance from the diagonal line indicates the value added by the institution; institutions falling above the diagonal line are those that add more value than expected based on the model. The gold diagonal line represents the points at which observed and expected senior scores are
equal. After testing seniors in spring 2014, your institution will appear in red.

More details about CLA+ value-added methodology-including model parameters, guidance on interpreting confidence intervals, and instructions for using your data file to calculate value-added estimates for subgroups of studentsare included in the Modeling Details section of this report (Appendix K).

CLA+ SUBSCORES (Section 4, page 5)

Each section of CLA+ is scored according to multiple skill-based categories. The three subscores for the PT are: Analysis and Problem Solving, Writing Effectiveness, and Writing Mechanics. The three subscores for the SRQs are: Scientific and Quantitative Reasoning, Critical Reading and Evaluation, and Critique an Argument.

The first table in Section 4, Performance Task: Distribution of Subscores, presents the distribution of subscores for the three subscore categories. Subscore categories are scored values ranging from 1 through 6, which each score value corresponding specific response characteristics (see Appendix G: Scoring CLA+ more information about the scoring rubric). The values in the graphs represent the percentage of students at your institution that performed at each score level.

The second table in Section 4, Selected-Response Questions: Mean Subscores, presents summary statistics for the three SRQ subscore categories. Scores in this section of CLA+ are determined by the number of correct responses in the skill set, adjusted for the difficulty of the group of questions asked. Each section subscore is reported in a subscale of approximately 200 to 800.

Mean Scores in this table show the average score received for each class level in the given subscore category. The 25th Percentile Scores indicate the score values at or below which 25 percent of your students scored, and the 75th Percentile Scores indicate the score values at or below which 75 percent of your students scored. Accordingly, half (50%) of the students in your sample scored between the 25 th and 75 th percentile scores shown in the table.

STUDENT EFFORT AND ENGAGEMENT (Section 5, page 6)

To allow institutions to determine the role of students' effort and engagement in their performance on CLA+, CAE has introduced a set of survey questions to the end of the assessment. These questions ask students how much effort they have put into the written-response (PT) and selected-response (SRQ) sections of CLA+, as well as how engaging they found each section of the assessment.

Answer options are provided on a likert scale, ranging from "No effort at all" to "My best effort" for the effort questions, and from "Not at all engaging" to "Extremely engaging" for the engagement questions.

The Student Effort and Engagement Survey Responses table provides the percentage of students at each class level who gave each answer option in the survey.

In addition to providing insight into the effort and motivation levels of an institution's students, these results can help identify cases in which an institution might want to enhance its recruitment efforts to boost motivation. Comparisons to the distribution of survey responses across all schools (see Appendix D: Results Across CLA+ Institutions) allow schools to see the degree to which their students are motivated and engaged relative to others.

STUDE NT SAMPLE SUMMARY (Section 6, page 7)

The final section of your CLA+ results is the Student Sample Summary, which provides the count and percentage of students within your sample who meet various characteristics. The characteristics reported include: transfer status (reported by participating
institutions during the registrar data collection process), gender, primary language, field of study, race or ethnicity, and parental education level. All demographic characteristics are provided by students in the post-assessment survey.

APPENDIX D: RESULTS ACROSS CLA+INSTITUTIONS

SECTION D1: SUMMARY RESULTS, BY CLASS

Number of Participating Institutions, by Class
Freshmen: 169 Sophomores: N/A Juniors: N/A Seniors: N/A

The average CLA+ institution has a senior Total CLA+ score of N/A, and a corresponding Mastery Level of N/A.

SECTION D.2: DISTRIBUTION OF MASTERY LEVELS ACROSS INSTITUTIONS

SECTION D4: CLA+SUBSCORES ACROSS INSTITUTIONS

NOTE: The Performance Task subscore categories are scored on a scale of 1 through 6.

Selected-Response Questions: Mean Subscores Across Institutions

	SCIENTIFIC \& QUANTITATIVE REASONING			CRITICAL READING \& EVALUATION			CRITIQUE AN ARGUMENT		
		$25^{\text {th }}$	$75^{\text {th }}$		$25^{\text {th }}$	$75^{\text {th }}$		$25^{\text {th }}$	$75^{\text {th }}$
	Mean	Percentile	Percentile	Mean	Percentile	Percentile	Mean	Percentile	Percentile
	Score								
FRESHMEN	499	473	519	498	476	520	498	471	524
SOPHOMORES	N/A								
J UNIORS	N/A								
SENIORS	N/A								

NOTE: The selected-response section subscores are reported on a scale ranging approximately from 200 to 800.

SECTION D5: STUDENT EFFORT AND ENGAGEMENT ACROSS CLA+ INSTITUTIONS

Mean Student Effort and Engagement Survey Responses

How much effort did you put into the written-response task/ selected-response questions?

		NO EFFORT AT ALL	A Little EFFORT	a Moderate AMOUNT OF EFFORT	ALOT OF EFFORT	MY BEST EFFORT
$\begin{aligned} & \text { PERFORMANCE } \\ & \text { TASK } \end{aligned}$	Freshmen	1\%	5\%	35\%	35\%	24\%
	Sophomores	N/A	N/A	N/A	N/A	N/A
	J uniors	N/A	N/A	N/A	N/A	N/A
	Seniors	N/A	N/A	N/A	N/A	N/A
SELECTEDRESPONSE QUESTIONS	Freshmen	2\%	14\%	42\%	28\%	14\%
	Sophomores	N/A	N/A	N/A	N/A	N/A
	J uniors	N/A	N/A	N/A	N/A	N/A
	Seniors	N/A	N/A	N/A	N/A	N/A

How engaging did you find the written-response task/ selected-response questions?

		NOT AT ALL ENGAGING	SLIGHTLY ENGAGING	MODERATELY ENGAGING	VERY ENGAGING	EXTREMELY ENGAGING
PERFORMANCE TASK	Freshmen	7%	17%	42%	28%	6%
	Sophomores	N/A	N/A	N/A	N/A	N/A
	Juniors	N/A	N/A	N/A	N/A	N/A
SELECTED- RESPONSE QUESTIONS	Freshmen	15%	Neniors	N/A	N/A	N/A
	Sophomores	N/A	N/A	N/A	N/A	
	Juniors	N/A	N/A	N/A	N/A	N/A
	Seniors	N/A	N/A	N/A	N/A	N/A

SECTION D6: STUDENT SAMPLE SUMMARY ACROSS CLA+

Student Sample Summary Across CLA+ Institutions					
		FRESHMEN	SOPHOMORES	JUNIORS	SENIORS
DEMOGRAPHIC CHARACTERISTIC		Mean \%	Mean \%	Mean \%	Mean \%
TRANSFER	Transfer Students	--	N/A	N/A	N/A
	Non-Transfer Students	--	N/A	N/A	N/A
GENDER	Male	39\%	N/A	N/A	N/A
	Female	60\%	N/A	N/A	N/A
	Decline to State	2\%	N/A	N/A	N/A
PRIMARY LANGUAGE	English	80\%	N/A	N/A	N/A
	Other	20\%	N/A	N/A	N/A
FIELD OF STUDY	Sciences \& Engineering	26\%	N/A	N/A	N/A
	Social Sciences	10\%	N/A	N/A	N/A
	Humanities \& Languages	11\%	N/A	N/A	N/A
	Business	14\%	N/A	N/A	N/A
	Helping / Services	26\%	N/A	N/A	N/A
	Undecided / Other / N/A	14\%	N/A	N/A	N/A
RACE ETHNICITY	American Indian / Alaska Native / Indigenous	1\%	N/A	N/A	N/A
	Asian (including Indian subcontinent and Philippines)	8\%	N/A	N/A	N/A
	Native Hawaiian or other Pacific Islander	1\%	N/A	N/A	N/A
	African-American / Black (including African and Caribbean), non-Hispanic	14% 19%	N/A	N/A	N/A
	Hispanic or Latino	19\%	N/A	N/A	N/A
	White (including Middle Eastern), non-Hispanic	50\%	N/A	N/A	N/A
	Other	4\%	N/A	N/A	N/A
	Decline to State	4\%	N/A	N/A	N/A
PARENT EDUCATION	Less than High School	8\%	N/A	N/A	N/A
	High School	24\%	N/A	N/A	N/A
	Some College	24\%	N/A	N/A	N/A
	Bachelor's Degree	27\%	N/A	N/A	N/A
	Graduate or Post-Graduate Degree	18\%	N/A	N/A	N/A

APPENDIX E: INSTITUTIONAL SAMPLE

The CLA+ sample of institutions is comprised of all institutions that have tested freshmen in fall 2013 or sophomores, juniors, or seniors in spring 2014. Because spring 2014 testing is currently underway, data for non-freshmen will not be available until early summer 2014. Unlike with the previous incarnation of the assessment, the CLA+ sample remains fixed from year to year. By using a fixed sample of institutions for national comparisons, institutions can more easily track their own progress
from year to year, without questions of whether changes in percentile rankings for an individual institution are due to true changes in performance or simply reflective of differences in the comparative sample.

To ensure national representativeness, CAE will continue to assess the sample of institutions and-if there are significant changes-update the institutional sample as needed.

SAMPLE REPRESENTATIVENESS

CLA+-participating institutions appear to be generally representative of their classmates with respect to entering ability levels as measured by Entering Academic Ability (EAA) scores.

Specifically, across institutions, the average EAA score of CLA+ freshmen was only seven points higher than that of the entire freshman class (1038 versus 1031, over $n=123$ institutions), and the correlation between the average EAA score of CLA+ freshmen and their classmates was high ($r=0.93$).

These data suggest that, as a group, students tested as part of the CLA+ institutional sample are similar to all students at the schools that make up the sample of CLA+ institutions. This correspondence increases confidence in the inferences that can be made from the results with the samples of students that were tested at a school to all the students at that institution.

CARNEGIE CLASSIFICATION

The following table shows CLA+ schools grouped by Basic Carnegie Classification. The spread of schools corresponds fairly well with that of the 1,587 fouryear not-for-profit institutions across the nation.

Note that counts in this table exclude some institutions that do not fall into these categories, such as Special Focus Institutions and institutions based outside of the United States.

Carnegie Classification of CLA+ Institutional Sample

$$
\text { NATION }(N=1,683) \quad C L A+(N=144)
$$

CARNEGIE CLASSIFICATION	N	$\%$	N	$\%$
DOCTORATE-GRANTING UNIVERSITIES	283	17	22	15
MASTER'S COLLEGES AND UNIVERSITIES	651	39	78	54
BACCALAUREATE COLLEGES	749	45	44	31

Source: Carnegie Foundation for the Advancement of Teaching, Carnegie Classifications Data File, January 16, 2014.

SCHOOL CHARACTERISTICS

The following table provides statistics on some important characteristics of colleges and universities across the nation compared with CLA+ schools.

These statistics suggest that CLA+ schools are fairly representative of four-year, not-for-profit institutions nationally. Percentage public and undergraduate student body size are exceptions.

School Characteristics of CLA+ Institutional Sample

SCHOOL CHARACTERISTIC	NATION	CLA+
PERCENTAGE PUBLIC	30	56
PERCENTAGE HISTORICALLY BLACK COLLEGE OR UNIVERSITY (HBCU)	4	4
MEAN PERCENTAGE OF UNDERGRADUATES RECEIVING PELL GRANTS	31	30
MEAN SIX-YEAR GRADUATION RATE	51	48
MEAN BARRON'S SELECTIVITY RATING	3.6	3.1
MEAN ESTIMATED MEDIAN SATSCORE	1058	1027
MEAN NUMBER OF FTE UNDERGRADUATE STUDENTS (ROUNDED)	3,869	7,296
MEAN STUDENT-RELATED EXPENDITURES PER FTE STUDENT (ROUNDED)	$\$ 12,330$	$\$ 10,497$

Sources: College Results Online dataset, managed by and obtained with permission from the Education Trust, covers most four-year Title IV-eligible higher-education institutions in the United States. Data were constructed from IPEDS and other sources. Because all schools did not report on every measure in the table, the averages and percentages may be based on slightly different denominators. Data also come from the Carnegie Foundation for the Advancement of Teaching, Carnegie Classifications Data File, J anuary 16, 2014.

CLA+ INSTITUTIONS

The institutions listed here, in alphabetical order, comprise the sample of institutions testing freshmen. To view a list of current participating institutions, please visit www.cae.org/claparticipants.

CLA+ Schools
Alaska Pacific University
Antelope Valley College
Appalachian State University
Augsburg College
Augustana College (SD)
Aurora University
Barton College
Bellarmine University
Bob J ones University
Bowling Green State University
Brigham Young University - Idaho
California M aritime Academy

California Polytechnic State University San Luis Obispo
California State Polytechnic University, Pomona
California State University, Bakersfield
California State University, Channel Islands
California State University, Chico
California State University, Dominguez Hills
California State University, East Bay
California State University, Fresno
California State University, Fullerton
California State University, Long Beach
California State University, Los Angeles
California State University, Monterey Bay
California State University, Monterey Bay, Computer
Science and Information Technology
California State University, Northridge
California State University, Sacramento
California State University, San Bernardino
California State University, San Marcos
California State University, Stanislaus
Centenary College of Louisiana

```
Clarke University
College of Saint Benedict/St.J ohn's University
Collin College
Colorado Christian University
Concord University
Concordia College
Culver-Stockton College
CUNY - Baruch College
CUNY - Borough of Manhattan Community College
CUNY - Bronx Community College
CUNY - Brooklyn College
CUNY - College of Staten Island
CUNY - Hostos Community College
CUNY - Hunter College
CUNY - J ohn J ay College of Criminal J ustice
CUNY - Kingsborough Community College
CUNY - LaGuardia Community College
CUNY - Lehman College
CUNY - Medgar Evers College
CUNY - New York City College of Technology
CUNY - Queens College
CUNY - Queensborough Community College
CUNY - The City College of New York
CUNY - York College
Dillard University
Drexel University, Department of Architecture and
Interiors
Earlham College
East Carolina University
Eastern Connecticut State University
Emory & Henry College
Fayetteville State University
Flagler College
Florida International University Honors College
Frostburg State University
Georgia College & State University
Great Basin College
Hardin-Simmons University
Hastings College
Hong Kong Polytechnic University
Howard Community College
Humboldt State University
Illinois College
Indiana University of Pennsylvania
J acksonville State University
Keene State College
Kent State University
Kepler Kigali
Kepler Kigali, Control
Keuka College
LaGrange College
Lewis University
Lynchburg College
Marshall University
Miami University - Oxford
Miles College
Minneapolis College of Art and Design
Minnesota State Community & Technical College
Mississippi University for Women
```

Monmouth University
Montclair State University
Morgan State University
National Louis University
Nevada State College
New York University Abu Dhabi
Newberry College
Nicholls State University
North Dakota State University
Nyack College
Ohio Wesleyan University
Our Lady of the Lake
Pittsburg State University
Plymouth State University
Presbyterian College
Purchase College
Queen's University
Quest University
Ramapo College of New J ersey
Robert Morris University
Roger Williams University
Saginaw Valley State University
San Diego State University
San Francisco State University
San J ose State University
Schreiner University
Shepherd University
Sonoma State University
Southern Connecticut State University
Southern Virginia University
Southwestern University
St. Ambrose University
St. J ohn Fisher College
Stetson University
Stonehill College
SUNY Cortland
Texas A\&M International University
Texas A\&M University-Texarkana
Texas State University - San Marcos
Texas Tech University
The Citadel
The College of Idaho
The Ohio State University
The Sage Colleges
Truckee M eadows Community College
Truman State University
University of Bridgeport
University of Evansville
University of Great Falls
University of Hawaii at Hilo, College of Business and
Economics
University of Houston
University of J amestown
University of Louisiana - Lafayette
University of Missouri - St. Louis
University of New Mexico
University of North Carolina Pembroke
University of North Dakota
University of Saint Mary

University of Texas - Pan American
University of Texas at Arlington
University of Texas at Austin
University of Texas at Dallas
University of Texas at El Paso
University of Texas at San Antonio
University of Texas at Tyler
University of Texas of the Permian Basin
Ursuline College
Warner University
Weber State University
West Chester University
Western Carolina University
Western Governors University

Western Kentucky University
Western Michigan University
Western Nevada College
Westminster College (MO)
Westminster College (UT)
Wichita State University
Wichita State University, School of Engineering
Wiley College
William Peace University
William Woods University
Winston-Salem State University
Wisconsin Lutheran College
Yakima Valley Community College

APPENDIX F: CLA+TASKS

INTRODUCTION TO CLA+ TASKS AND SELECTED-RESPONSE QUESTIONS

CLA+ consists of a Performance Task (PT) and a set of Selected-Response Questions (SRQs). All CLA+ exams are administered online.

The PTs consist of open-ended prompts that require constructed responses. SRQs are presented in three sets, each focusing on a different skill area. Students choose one response-out of four provided -to each question asked.

CLA+ requires that students use critical-thinking and written-communication skills to perform cognitively demanding tasks. The integration of these skills mirrors the requirements of serious thinking and writing tasks faced in life outside of the classroom.

OVERVIE W OF THE CLA+ PERFORMANCE TASK (PT)

Each PT requires students to use an integrated set of analytic reasoning, problem solving, and writtencommunication skills to answer an open-ended question about a hypothetical but realistic situation. In addition to directions and questions, each PT also has its own Document Library that includes a range of informational sources, such as: letters, memos, summaries of research reports, newspaper articles, maps, photographs, diagrams, tables, charts, and interview note or transcripts. Each PT is typically accompanied by between four and eight documents. Students are instructed to use these materials in preparing their answers to the Performance Task's question within the allotted 60 minutes.

The first portion of each Performance Task contains general instructions and introductory material. The student is then presented with a split screen. On the right side of the screen is a list of the materials in the Document Library. The student selects a particular document to view by using a pull-down menu. A question and a response box are on the left side of the screen. An example is shown on the following page. There is no limit on how much a student can type.

No two PTs assess the exact same combination of skills. Some ask students to identify and compare and contrast the strengths and limitations of alternative hypotheses, points of view, courses of action, etc. To perform these and other tasks, students may have to weigh different types of evidence, evaluate the credibility of various
documents, spot possible bias, and identify questionable or critical assumptions.

Performance Tasks my also ask students to suggest or select a course of action to resolve conflicting or competing strategies and then provide a rationale for that decision, including why it is likely to be better than one or more other approaches. For example, students may be asked to anticipate potential difficulties or hazards that are associated with different ways of dealing with a problem, including the likely short- and long-term consequences and implications of these strategies. Students may then be asked to suggest and defend one or more of these approaches.

Alternatively, students may be asked to review a collection of materials, and then choose amongst a set of options to solve a problem or propose a new solution to the problem. PTs often require students to marshal evidence from different sources; distinguish rational arguments from emotional ones and fact from opinion; understand data in tables and figures; deal with inadequate, ambiguous, or conflicting information; spot deception and holes in the arguments made by others; recognize information that is and is not relevant to the task at hand; identify additional information that would help to resolve issues; and weigh, organize, and synthesize information from several sources.

To view a sample CLA+ PT, please visit the Sample Tasks section of CAE's website at www.cae.org/cla.

Preview of the Performance Task Document Library

OVERVIEW OF CLA+ SELECTED-RESPONSE QUESTIONS (SRQs)

Like the PT, CLA+ SRQs require students to use an integrated set of critical-thinking skills across three question sets: the first assesses scientific and quantitative reasoning, the second assesses critical reading and evaluation, and the final set requires students to detect logical flaws and questionable assumptions to critique an argument. Also like the PT, each question set is accompanied by one to three documents of varying natures. Students are instructed to use these materials in preparing their answers to the questions within the allotted 30 minutes.

The Scientific \& Quantitative Reasoning section contains ten questions that require students to use information and arguments provided in (an) accompanying document(s) to apply critical-thinking skills. Some of the questions may require students to: make inferences and hypotheses based on given results; support or refute a position; identify information or quantitative data that is connected and conflicting; detect questionable assumptions (such as implications of causation based on correlation); evaluate the reliability of the information provided (such as the experimental design or data collection methodology); draw a
conclusion or decide on a course of action to solve the problem; evaluate alternate conclusions; or recognize that the text leaves some matters uncertain and propose additional research to address these matters. The supporting documents in this section present and discuss real-life research results.

The Critical Reading \& Evaluation section also contains 10 questions that require students to use information and arguments from (an) accompanying document(s) to apply critical-thinking skills. Some of the questions may require students to: support or refute a position; identify connected and conflicting information; analyze logic; identify assumptions in arguments; make justifiable inferences; or evaluate the reliability of the information provided. The supporting documents in this section may present debates, conversations, or multiple literary or historical texts with opposing views on an authentic issue.

The Critique an Argument section contains five questions. Students are presented with a brief argument about an authentic issue, and must use their critical-thinking skills to critique the argument.

Some of the questions may require students to: evaluate alternate conclusions; address additional information that could strengthen or weaken the argument; detect logical flaws and questionable assumptions in the argument; and evaluate the
reliability of information, including recognizing potential biases or conflicts of interest.

To view sample CLA+ SRQs, please visit the Sample Tasks section of CAE's website at www.cae.org/cla.

ASSESSMENT DEVELOPMENT

CAE has a team of experienced writers who-with researchers and editorial reviewers-generate ideas for tasks, question sets, and supporting documents. Each group then contributes to the development and revision of the tasks, questions, and accompanying documents.

Performance Task Development

During the development of PTs, care is taken to ensure that sufficient information is provided to permit multiple reasonable solutions to the issues present in the PT. Documents are crafted such that information is presented in multiple formats (e.g., tables, figures, news articles, editorials, emails, etc.).

While developing a PT, a list of the intended content from each document is established and revised. This list is used to ensure that each piece of information is clearly reflected in the documents, and that no unintended additional pieces of information are embedded. This list serves as a draft starting point for scorer trainings, and is used in alignment with the analytic scoring items used in the PT scoring rubrics.

During the editorial and revision process, information is either added to documents or removed from documents to ensure that students could arrive at approximately three or four different conclusions based on a variety of evidence to back up each conclusion. Typically, some conclusions are designed to be supported better than others.

The question for the PT is also drafted and revised during the development of the documents. The question is designed such that students are prompted to read and attend to multiple sources of information in the documents, then evaluate the documents and use their analyses to draw conclusions and justify those conclusions.

After several rounds of revisions, the most promising of the PTs and SRQ sets are selected for piloting. Student responses from the pilot test are examined to identify what pieces of information are unintentionally ambiguous, and what pieces of information in the documents should be removed. After revisions, the tasks that elicit the intended types and ranges of student responses are made operational.

Selected-Response Questions Development

The process for developing SRQs is similar to that of PTs. Writers develop documents -based on real-life data and issues-that might make use of flawed arguments, present multiple possibly valid (or invalid) assumptions or conclusions, and potentially leave open alternative conclusions or hypotheses. These characteristics serve as the foundation for the selected-response questions that accompany the documents.

During review, question editors work with writers to confirm that the correct answer options are in fact correct based on the information provided in the documents, and that incorrect answers are not potentially plausible. Likewise, reviewers take care to ensure that the questions are measuring the intended critical-thinking skills.

After several rounds of revision, the most promising of the SRQ passages and questions are selected for piloting. Student responses from the pilot test are examined to identify what pieces of information, questions, or response options are unintentionally ambiguous, and what pieces of information in the documents should be removed. After revision, the best-functioning question sets (i.e., those that elicit the intended types and ranges of student responses) are selected for the operational test.

APPENDIX G: SCORING CLA+

SCORING CRITERIA

Performance Task responses are scored in three skill areas: Analysis \& Problem Solving, Writing Effectiveness, and Writing Mechanics. Each of these skill areas represents a subscore.

Subscores are assigned criterion-referenced scores, with each score value corresponding to characteristics of a student's response. The Performance Task rubric is available on our website at www.cae.org/claptrubric.

Selected-Response Question section scores are determined by the number of correct responses provided in each of the three question sets. Each question set represents its own subscore category: Scientific \& Quantitative Reasoning (10 questions), Critical Reading \& Evaluation (10 questions), and Critique an Argument (5 questions). Because each question set is not necessarily of equal difficulty, the scores are adjusted to account for differences between them, and then reported on a common scale. Details about this scaling process are provided in the Scaling Procedures section of this report (AppendixJ).

THE SCORING PROCESS

During piloting of any new Performance Tasks, all responses are double-scored by human scorers. These scoring responses are then used to train human scorers and the machine-scoring engine for all operational test administrations.

Once tasks are fully operational, CLA+ uses a combination of automated and human scoring for its PTs. CAE uses Intelligent Essay Assessor (IEA) for its automated scoring. IEA is the automated scoring engine developed by Pearson Knowledge Technologies to evaluate the meaning of text, not just writing mechanics. Pearson has trained IEA for CLA+ using a broad range of real CLA+ responses and scores to ensure its consistency with scores generated by human scorers.

Unless a school chooses lower-stakes testing (no calculation of student Mastery Levels), each PT response is double-scored: once by IEA, and once by a trained human scorer. Responses from schools that choose low-stakes testing are scored only once, by IEA.

All scorer candidates undergo rigorous training in order to become certified CLA+ scorers. Training includes an orientation to the prompts and scoring rubrics/guides, repeated practice grading a wide range of student responses, and extensive feedback and discussion after scoring each response.

To ensure continuous human scorer calibration, CAE developed the E-Verification system for the online Scoring Interface. The E-Verification system was developed to improve and streamline scoring.

Calibration of scorers through the E-Verification system requires scorers to score previously-scored results, or "Verification Papers", when they first start scoring, as well as throughout the scoring window. The system will periodically present Verification Papers to scorers in lieu of student responses, though they are not flagged to the scorers as Verification Papers. The system does not indicate when a scorer has successfully scored a Verification Paper, but if the scorer fails to accurately score a series of Verification Papers, he or she will be removed from scoring and must participate in a remediation process. At this point, scorers are either further coached or removed from scoring.

Each response receives subscores in the categories of Analysis \& Problem Solving, Writing Effectiveness, and Writing Mechanics. Subscores are assigned on a scale of 1 (lowest) to 6 (highest). Blank responses or responses that are entirely unrelated to the task (e.g., writing about what they had for breakfast) are flagged for removal from results.

For the Selected-Response Questions section of CLA+, each question set receives a corresponding subscore. Subscores are determined by the number of questions that were correctly answered, with that score adjusted for the difficulty of the specific set received and then reported on a common scale. For instance a student might correctly answer seven questions on one Critical Reading \& Evaluation question set but would only correctly answer six questions had they received another Critical Reading \& Evaluation question set. Scores are equated so that each subscore category has the same mean and
standard deviation of scores, making them comparable to each other.

Unless a student fails to start a section or is unable to finish due to a technical glitch or connection error,
any unanswered question is scored as incorrect, though if a student does not attempt at least half of the SRQs, the student will not receive a score for that section. Score values range from approximately 200 to 800 for each section.

APPENDIX H: MASTERY LEVELS

SETTING STANDARDS FOR CLA+

With the creation and launch of CLA+, a standardsetting study was conducted to formally establish fair and defensible levels of mastery for this new and improved assessment. The study was held at CAE headquarters in New York, New York on December 12, 2013. Twelve distinguished panelists, representing varying sectors of college and employers were invited to participate in the study.

As part of the standard-setting study, the panelists discussed and defined the profile for the three different levels of mastery (Basic, Proficient, and Advanced). This discussion was based on the CLA+ rubric and the knowledge, skills, and abilities needed
in order to perform well on CLA+. The purpose of this activity was to develop a consensus among judges for each level of mastery and also create a narrative profile for the necessary knowledge, skills, and abilities CLA+ students. During the subsequent rating activities, judges relied on these consensus profiles to make item performance estimates. Judges broke into small groups (three groups of four judges) and each group discussed the characteristics of one level of mastery. The groups then reconvened and reported their findings to the large group and formed a consensus on all three levels of mastery. The table below lists the panelists for the CLA+ standard-setting study.

CLA+ Standard-Setting Study Participant List and Institutional Affiliation
PARTICIPANT INSTITUTION

Aviva Altman	J ohnson \& J ohnson
J on Basden	Federal Reserve
Mark Battersby	Capilano University (Canada)
Paul Carney	Minnesota State Technical and Community College
Anne Dueweke	Kalamazoo College
Terry Grimes	Council of Independent Colleges
Sonia Gugga	Columbia University
Marsha Hirano- Nakanishi	California State University System
Rachel L. Kay	McKinsey \& Company
Michael Poliakoff	American Council of Trustees and Alumni
Elizabeth Quinn	Fayetteville State University
Paul Thayer	Colorado State University

CLA+ MASTERY LEVELS

Individual CLA+ Mastery Levels are determined by the Total CLA+ score received by a given student. On the institution level, Mastery Levels are determined by the school's average performance for a given cohort of students.

The results of the CLA+ standard-setting study are used by CAE to distinguish between CLA+ students who have varying knowledge, skills, and abilities as measured by the assessment. Individual institutions should not use these results for purposes other than
this (e.g., basing graduation or employment decisions on individual CLA+ levels of mastery). If an institution is interested in using CLA+ results as part of a graduation requirement, a separate standardsetting study should be conducted with this specific purpose in mind.

The following table summarizes each level of mastery and also provides a description of the students who are below the basic level of mastery.

Student Levels of Mastery Profiles			
LEVEL OF MASTERY	PROFILE		Students who are below basic do not meet the minimum requirements to merit a
:---			
basic level of mastery.			

APPENDIXI: DIAGNOSTIC GUIDANCE

INTERPRETING CLA+ RESULTS

CLA+ results can be used as a measure of overall institutional performance on tasks that measure higher-order skills, and can also be a tool for identifying areas of skill or weakness for individual students. Examining performance across sections of CLA+ can serve as an initial diagnostic exercise. The two sections of CLA+-the Performance Task and the Selected-Response Questions-differ in the combination of skills necessary for high performance.

The PT measures Analysis \& Problem Solving, Writing Effectiveness, and Writing Mechanics. The SRQs measure Scientific \& Quantitative Reasoning, Critical Reading \& Evaluation, and Critique an Argument (the ability to detect logical flaws and questionable assumptions).

Selected-Response Question subscores are assigned based on the number of questions correctly answered, with that value adjusted for the difficulty of the particular questions sets received, and then converted to a common scale. These subscores were placed on a scale with a mean of 500 and a standard deviation of 100 based on the performance of freshmen that tested in fall 2013, and so each SRQ subscore score ranges from approximately 200 to 800.

Performance Task subscores are assigned on a scale of 1 (lowest) to 6 (highest). Unlike the SRQ subscores,

PT subscores are not adjusted for difficulty. These subscores remain unadjusted because they are intended to facilitate criterion-referenced interpretations. For example, a " 4 " in Analysis and Problem Solving means that a response had certain qualities (e.g., "Provides valid support that addresses multiple pieces of relevant and credible information..."), and any adjustment to that score would compromise the interpretation.

The ability to make claims like, "Our students seem to be doing better in Writing Effectiveness than in Analysis \& Problem Solving on the Performance Task" is clearly desirable. This can be done by comparing each subscore distribution to its corresponding reference distribution displayed in Section 4 (page 5) of your institutional report. Please examine the results presented in the Performance Task subscore distribution table in combination with the Performance Task scoring rubric, available on CAE's website at www.cae.org/claptrubric.

In addition to the subscores, the CLA+ M astery Level scores allow for results to be interpreted in terms of the qualities that are exhibited by examinees. Each Mastery Level corresponds to certain evidence of critical-thinking and written-communication skills. Details about each Mastery Level are provided in the preceding section of this report (Mastery Levels, AppendixH).

COMPARING RESULTS ACROSS ADMINISTRATIONS

One way to assess performance is to track changes in CLA+ scores over time. This can be done either by testing a cohort of students longitudinally, or participating regularly in cross-sectional administrations of CLA+.

Because the assessment format for CLA+ differs from that of its predecessor, the CLA, direct score comparisons will not be feasible across data from before and after fall 2013. However, scaling equations can be used to adjust CLA scores for making comparisons with CLA+.

Schools wishing to compare CLA+ results to prior year results can use the following equation, which was derived by comparing CLA and CLA+ total scores
from 134 institutions that tested students on both the new and old forms of the assessment ($r=0.822$):

CLA scores from fall 2010 - spring 2013:

 score $_{\text {CLA+ }}=184.188+\left(0.812 \cdot\right.$ score $\left._{C L A}\right)$CLA scores from before fall 2010:

```
score cLA+}=268.066+(0.6897 * score CLA )
```

Aside from making direct score comparisons across earlier administrations, schools can also use their percentile rankings to determine changes in performance relative to other CLA+ institutions.

All test administrations after the fall 2013 CLA+ window, however, will be easily comparable to each other. Because the institutional and student sample used for setting norms (percentile rankings, valueadded parameters, etc.) are fixed based on the
institutional sample from the 2013-14 academic year, any changes in value-added score or ranking can be attributed to the school's CLA+ results, rather than potential shifts in the norming sample.

APPENDIXJ: SCALING PROCEDURES

CONVERTING CLA+ SCORES TO A COMMON SCALE

To provide CLA+ scores, CAE converts each section score to a common scale of measurement. This allows for the combining of scores from different tasks to compute a school's mean scale score for each section of CLA + , as well as a total average scale score across the two CLA+ sections.

For each Performance Task, raw subscores are summed to produce a raw total score. Because not all tasks have the exact same level of difficulty, raw total scores from the different tasks are converted to a common scale of measurement. This process results in scale scores that reflect comparable levels of proficiency across tasks. For example, a given CLA+ scale score indicates approximately the same percentile rank regardless of the task on which it was earned.

For the PT, a linear transformation is used to convert raw scores to scale scores. This process results in a scale score distribution with the same mean and standard deviation as the SAT Math and SAT Critical Reading combined (or converted ACT) scores of college freshmen taking CLA+; in this case the data used were from college freshmen that took CLA+ in fall 2013. This type of scaling preserves the shape of the raw score distribution and maintains the relative standing of students. For example, the student with the highest raw score on a task will also have the highest scale score on that task, the student with the next highest raw score will be assigned the next highest scale score, and so on.

This type of scaling makes it such that a very high raw score earned on the task (not necessarily the highest possible score) corresponds approximately to the highest SAT (or converted ACT) score of any freshman who tested in fall 2013. Similarly, a very low raw score earned on a task would be assigned a scale score value that is close to the lowest SAT (or
converted ACT) score of any freshman who took CLA+ in fall 2013. On rare occasions that students achieve exceptionally high or low raw scores, this scaling procedure may produce scale scores that fall outside the normal SAT (Math + Critical Reading) score range of 400 to 1600 .

For each of the subscores in the Selected-Response Questions section, raw section scores-determined by the number of correct responses-are first equated, and then converted to a common scale. The equating process simply takes the scores from each set of questions in a subscore area, and then converts those scores to have the same mean and standard deviation across all forms of the question set. This process adjusts scores according to the difficulty of a given item set, so that comparisons can be made across test forms.

These equated section scores are then converted to a more interpretable scale using a linear transformation, with a mean of 500 and standard deviation of 100, based on the fall 2013 freshmen taking CLA+. This scale results in selected-response section subscores ranging from approximately 200 to 800, similar to the subsections of the SAT.

The weighted average of the section subscores are then transformed again, using the same scaling parameters as the PT-using the distribution of SAT scores of college freshmen that took CLA in fall 2012 - to place both sections of CLA+ on the same scale.

CLA+ Total Scores are calculated by taking the average of the two sections of CLA+ completed by a given student. Students that did not complete or give scorable responses to both sections of the assessment will not receive total scores.

SCALING EAA SCORES

To facilitate reporting results across schools, ACT scores are converted (using the ACT-SAT crosswalk that follows) to the scale of measurement used to report combined SAT Math and Critical Reading scores.

For institutions where a majority of students did not have ACT or SAT scores (e.g., two-year institutions and open-admission schools), we make available the Scholastic Level Exam (SLE), a short-form cognitive ability measure, as part of CLA+. The SLE is produced by Wonderlic, Inc. SLE scores are
converted to SAT scores using data from 1,148 students that participated in the spring 2006 administration of the CLA that had both SAT and SLE scores.

These converted scores (both ACT to SAT and SLE to SAT) are referred to simply as entering academic ability (EAA) scores.

Standard ACT to SAT Crosswalk	
ACT	SAT
36	1600
35	1560
34	1510
33	1460
32	1420
31	1380
30	1340
29	1300
28	1260
27	1220
26	1190
25	1150
24	1110
23	1070
22	1030
21	990
20	950
19	910
18	870
17	830
16	790
15	740
14	690
13	640
12	590
11	Board/ oint Statement. Retrieved
Source: ACT (2008). ACT/Col/ege	
from http://www.act.org/aap/concordance/pdf/report.pdf	

APPENDIX K: MODELING DETAILS

MODELING STUDENT-LEVEL SCORES

Within each school, an equation like the following is used to model the relationship between senior students' EAA scores and their CLA+ scores:

$$
C L A_{i j}=\overline{C L A}_{j}+0.43\left(E A A_{i j}-\overline{E A A}_{j}\right)+r_{i j}
$$

(Note that the coefficients used here are for illustrative purposes only; the coefficients used for CLA+ value-added modeling will be available following the spring 2014 administration of CLA+.)

In this equation, $C L A_{i j}$ is student i in school j 's CLA+ score, and this is modeled as a function of school j 's average senior CLA+ score ($\left.\overline{C L A}_{j}\right)$ and student i 's EAA score $\left(E A A_{i j}\right)$ minus the average EAA score of participating seniors at school j. Specifically, a student's CLA+ score equals (a) the school's average senior CLA+ score plus (b) an adjustment based on the student's EAA score relative to the average among senior participants in school j and (c) a residual term $r_{i j}$ equal to the difference between a
student's observed and expected CLA+ performance, with positive numbers "better than expected." Here, the student-level slope coefficient for EAA is 0.43 , which indicates that for every 1 point difference in EAA, one would expect a 0.43 point difference in CLA+ performance.

To illustrate the use of this equation for computing a student's expected CLA+ score, consider a school with an average senior CLA+ score of 1200 and an average EAA score of 1130. A senior student in this school with an EAA score of 1080 would be expected to have a CLA+ score of $1200+0.43(1080-1130)=$ 1179. If this student actually scored a 1210 on CLA+, the residual term $r_{i j}$ would be +31 because this student scored 31 points higher than one would expect given his or her EAA. Using the equation described here would produce student-level deviation scores that differ slightly from those that inform the performance levels reported in your Student Data File.

MODELING SCHOOL-LEVEL SCORES

Institutional value-added scores are derived from the school-level equation ${ }^{2}$ of the HLM, which takes the form

$$
\overline{C L A}_{j}=355+0.32\left(E A A_{j}\right)+0.45\left(\overline{C L A}_{f r, j}\right)+u_{j}
$$

Where $\overline{C L A}_{f r, j}$ is the average CLA+ score of participating freshmen at school j, and u_{j} is that school's value-added score estimate $\left(\overline{C L A}_{j}\right.$ and $E A A_{j}$ are defined the same as in the student-level equation). Specifically, u_{j} is the difference between a school's observed and expected average senior CLA+ performance. In this equation, 355 is the school-level intercept, 0.32 is the school-level slope coefficient for average EAA, and 0.45 is the school-level slope coefficient for average freshman CLA+. Combined with average EAA and average freshman CLA+ scores, these coefficients allow for computing expected senior average CLA+ scores.

[^1]It may seem unconventional to use the average freshman CLA+ score from a different group of students as a predictor of the average senior CLA+ score, but analyses of CLA+ data consistently indicate that average freshman CLA+ performance adds significantly to the model. That is, average EAA and average freshman CLA+ account for different but nevertheless important characteristics of students as they enter college. Moreover, this model would not be credible as a value-added model for CLA+ scores if there were no control for CLA+ performance at the start of college.

As a conceptual illustration of this approach, consider several schools administering CLA+ to groups of seniors that had similar academic skills upon entering college-as indicated by average SAT or ACT scores and average freshman CLA+ scores. If, at the time of graduation, average CLA+ performance at one school is greater than average performance at the other schools testing groups of students with similar entering characteristics, one can infer that greater gains in critical-thinking and writtencommunication skills occurred at this school. That is,
this school has greater value added than the other schools.

To illustrate the use of the school-level equation for estimating value-added scores, consider a school with an average freshman CLA+ score of 1050, an average senior CLA+ score of 1200, and an average senior EAA score of 1130. According to the schoollevel equation, one would expect the senior average CLA+ performance at this school to be $355+0.32(1130)+0.45(1050)=1189$. The observed senior average CLA+ performance was 1200, which is 11 points higher than the typical school testing students with similar EAA and freshman CLA+ scores. Converted to a standard scale, the valueadded score would be 0.28, which would place the school in the "Near Expected" performance category of value added.

Value-added scores are properly interpreted as senior average CLA+ performance relative to the typical school testing students with similar
academic skills upon entering college. The proper conditional interpretation of value-added skills is essential.

First, it underscores the major goal of value-added modeling: obtaining a benchmark for performance based on schools admitting similar students. Secondly, a high value-added score does not necessarily indicate high absolute performance on CLA+. Schools with low absolute CLA+ performance may obtain high value-added scores by performing well relative to expected (i.e., relative to the typical school testing students with similar academic skills upon entering college). Likewise, schools with high absolute CLA+ performance may obtain low valueadded scores by performing poorly relative to expected. Though it is technically acceptable to interpret value-added scores as relative to all other schools participating in CLA+ after controlling for entering student characteristics, this is not the preferred interpretation because it encourages comparisons among disparate institutions.

INTERPRETING CONFIDENCE INTERVALS

It is important to keep in mind that value-added scores are estimates of unknown quantities. Put another way, the value-added score each school receives is a "best guess" based on the available information. Given their inherent uncertainty, valueadded scores must be interpreted in light of available information about their precision. HLM estimation (described in the Methods section of this report, Appendix B) provides standard errors for value- added scores, which can be used to compute a unique 95% confidence interval for each school. These standard errors reflect within- and betweenschool variation in CLA+ and EAA scores, and they are most strongly related to senior sample size. Schools testing larger samples of seniors obtain more precise estimates of value added and therefore have smaller standard errors and corresponding 95\% confidence intervals.

With a senior sample size near 100, our example school has a standard error of 0.35 (on the standardized value-added score scale). This school's 95% confidence interval has a range from -0.41 to 0.97 , which was calculated as the value-added estimate plus or minus 1.96 multiplied by the standard error. To provide some perspective, consider that the confidence interval would have been about 30% larger (from -0.60 to 1.16) if this school tested half as many students. If this school tested twice as many students, the confidence
interval would have been about 20\% smaller (from 0.26 to 0.83).

Unfortunately, inaccurate interpretations of confidence intervals are common. It is not correct to say "there is a 95% chance that my school's 'true' value-added score is somewhere between -0.41 and 0.97 " because it is either in the interval or it is not in the interval. Unfortunately, we cannot know which. The confidence interval reflects uncertainty in the estimate of the true score (due to sampling variation), not uncertainty in the true score itself. Correctly interpreted, a 95\% confidence interval indicates the variation in value-added scores we should expect if testing were repeated with different samples of students a large number of times. It may be stated that, "if testing were repeated 100 times with different samples of students, about 95 out of the 100 resulting confidence intervals would include my school's 'true' value-added score."

Using conventional rules for judging statistical significance, one could draw several inferences from this school's 95\% confidence interval. First, it can be said that this school's value-added score is significantly different from value-added scores lower than -0.41 and greater than 0.97 . Second, because 0 is within the range of the 95% confidence interval, it may be said that this school's value-added score is not significantly different from 0 . Note that a valueadded score of 0 does not indicate zero learning; it
instead indicates typical (or "near expected") senior average CLA+ performance, which implies learning
typical of schools testing students with similar academic skills upon entering college.

STATISTICAL SPECIFICATION OF THE CLA+ VALUE-ADDED MODEL

Level 1 (Student Level): $C L A_{i j}=\beta_{0 j}+\beta_{1 j}\left(E A A_{i j}-\overline{E A A}_{j}\right)+r_{i j}$

- $C L A_{i j}$ is the CLA+ score of student i at school j.
- $E A A_{i j}$ is the Entering Academic Ability score of student i at school j.
- $\overline{E A A}_{j}$ is the mean EAA score at school j.
- $\quad \beta_{0 j}$ is the student-level intercept (equal to the mean CLA+ score at school j).
- $\quad \beta_{1 j}$ is the student-level slope coefficient for EAA at school j (assumed to be the same across schools).
- $\quad r_{i j}$ is the residual for student i in school j, where $r_{i j} \sim N\left(0, \sigma^{2}\right)$ and σ^{2} is the variance of the student-level residuals (the pooled within-school variance of CLA+ scores after controlling for EAA).

Level 2 (School Level): $\beta_{0 j}=\gamma_{00}+\gamma_{01}\left(\overline{E A A}_{j}\right)+\gamma_{02}\left(\overline{C L A}_{f r, j}\right)+\mu_{0 j}$ and $\beta_{1 j}=\gamma_{10}$

- $\overline{C L A}_{f r, j}$ is the mean freshman CLA+ score at school j.
- $\quad \gamma_{00}$ is the school-level value-added equation intercept.
- $\quad \gamma_{01}$ is the school-level value-added equation slope coefficient for senior mean EAA.
- $\quad \gamma_{02}$ is the school-level value-added equation slope coefficient for freshman mean CLA+.
- $\quad \gamma_{10}$ is the student-level slope coefficient for EAA (assumed to be the same across schools).
- $\mu_{0 j}$ is the value-added equation residual for school j (i.e., the value-added score), where $\mu_{0 j} \sim N\left(\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{cc}\tau_{00} & 0 \\ 0 & 0\end{array}\right]\right)$ and τ_{00} is the variance of the school-level residuals (the variance in mean CLA+ scores after controlling for mean EAA and mean freshman CLA+ scores).

Mixed Model (combining the school- and student-level equations):
$C L A_{i j}=\gamma_{00}+\gamma_{01}\left(\overline{E A A}_{j}\right)+\gamma_{02}\left(\overline{C L A}_{f r, j}\right)+\gamma_{10}\left(E A A_{i j}-\overline{E A A}_{j}\right)+\mu_{0 j}+r_{i j}$

ESTIMATED PARAMETERS FOR THE VALUE-ADDED MODEL

Estimated Parameters for the Value-Added Model

STANDARD					
TOTAL CLA+ SCORE	$\boldsymbol{\gamma}_{\mathbf{0 0}}$	$\boldsymbol{\gamma}_{\mathbf{1 0}}$	$\boldsymbol{\gamma}_{\mathbf{0 1}}$	$\boldsymbol{\gamma}_{\mathbf{0 2}}$	DEVIATION
PERFORMANCE TASK	--	--	--	--	--
SELECTED-RESPONSE QUESTIONS	--	--	--	--	--

Following the completion of the spring administration of CLA+, the table above will show the estimated parameters for the CLA+ value-added model. Using these estimated parameters and the instructions below (also described in the statistical models on the previous page), one can compute the expected senior CLA+ score for a given school. In
combination with the observed mean score for seniors at that school, this can be used to compute the school's value-added score. These values can also be used to perform subgroup analyses, or estimate value-added for groups of students that have been tested longitudinally.

HOW TO CALCULATE CLA+ VALUE-ADDED SCORES

To calculate value-added scores for your students, you will need:

- Samples of entering and exiting students with CLA+ and EAA scores (see your CLA+ Student Data File)
- The estimated parameters for the value- added model (see table above)

1. Refer to your CLA+ Student Data File to identify your subgroup sample of interest. The subgroup must contain freshmen and seniors with CLA+ scores and EAA scores.
2. Using your CLA+ Student Data File, compute:

- The mean EAA score of seniors (exiting students) in the sample
- The mean CLA+ score of freshmen (entering students) in the sample
- The mean CLA+ score of seniors (exiting students) in the sample

3. Calculate the senior sample's expected mean CLA+ score, using the parameters from the table above. Please note that the same equation can be used for the individual sections of CLA+, as well as for the total CLA+ score, by placing the appropriate parameter values from the appropriate row in the table into the equation:

$$
\text { Expected Score }=\gamma_{00}+\gamma_{01}(\text { senior mean } E A A)+\gamma_{02}(\text { freshman mean CLA score })
$$

4. Use your expected score to calculate your subgroup sample's value-added score:

Value-added Score, unstandardized $=($ Observed senior mean score $)-($ Expected senior mean score $)$
5. Convert that value-added score to standard deviation units:

$$
\text { Value-added Score, standardized }=\frac{\text { Value-added score, unstandardized }}{\text { Standard Deviation }}
$$

APPENDIX L: PERCENTILE LOOK-UP TABLES

PERCENTILE LOOK-UP TABLES FOR CLA+ SCORES

For schools interested in the distribution of performance across CLA+, CAE provides percentile look-up tables for CLA+ scores. The tables list the scores for each section of CLA+ (PT and SRQs), as well as the Total CLA+ and EAA, associated with each percentile value.

These tables are available on CAE's website. Institution-level percentile scores are accessible at
www.cae.org/claplusschoolpercentiles, and student-level percentile scores are available at www.cae.org/claplusStudentpercentiles.

The tables currently only contain data for freshmen, but following the spring 2014 administration of CLA+, these tables will be updated to contain percentile values for college seniors, as well as for value-added scores.

APPENDIX M: STUDENT DATA FILE

EXPLORING STUDENT DATA

In tandem with your report, we provide a CLA+ Student Data File, which includes variables across three categories: self-reported information from students in their CLA+ online profile and CLA+ postassessment survey; CLA+ scores and identifiers; and information provided by the registrar.

We provide student-level information for linking with other data you collect (e.g., from NSSE, CIRP, portfolios, local assessments, course-taking patterns, participation in specialized programs, etc.) to help you hypothesize about factors related to institutional performance.

Student-level scores were historically not designed to be diagnostic at the individual level; however, with the CLA+ student-level scores have greater utility. Student-level results can now be used for formative purposes, to identify individual students' areas of weakness, as well as that of the entire sample.

The student data files now include more information such as subscores for Scientific \& Quantitative Reasoning, Critical Reading \& Evaluation, and Critique an Argument (the ability to identify logical fallacies and questionable assumptions within an argument).

The data file also includes responses from new survey questions-where students were asked about the level of effort they put into each section of CLA+ and how engaged they were with the
assessment-to provide more context to institutional results and individual student scores. These responses can also help schools identify motivation issues within their samples, so that they can make adjustments to their outreach and recruitment methods for future administrations.

If an institution has elected to use the Local Survey feature within the CLA+ testing platform -a tool that allows schools to append up to nine survey questions of their own to the end of the assessment-these questions and students' corresponding responses will also appear in the student data file, allowing schools to create a richer, customized data set to facilitate institutional research with CLA+.

Schools may also choose to analyze the performance of subgroups of students to determine whether certain groups of students might be in need of targeted educational enhancements. Value-added scores can be estimated for these subgroups, as well, and compared to growth seen across the institution as a whole.

Starting with the fall 2013 administration studentlevel CLA+ data can also be compiled from year to year, yielding a larger and much richer dataset than could be achieved within a single academic year. Likewise, aggregating student data across years allows schools to longitudinally track and identify improvements in critical thinking and written communication made by individual students.

APPENDIX N: MOVING FORWARD

WHAT NEXT?

The information presented in your institutional report is designed to help you better understand the contributions your institution is making toward your students' learning gains. However, the institutional report alone provides a snapshot of student performance.

When combined with the other tools and services CLA+ has to offer, the institutional report can become a powerful tool in helping you and your institution target specific areas of improvement, while effectively and authentically aligning teaching, learning, and assessment practices in ways that may improve institutional performance over time.

We encourage institutions to examine performance across CLA+ and communicate the results across campus, link student-level CLA+ results with other data sources, pursue in-depth sampling, collaborate with their peers, and participate in professional development offerings.

Student-level CLA+ results are provided for you to link to other data sources (e.g., course-taking patterns, grades, portfolios, student surveys, etc.). These results are strengthened by the provision of scores in the areas of Analysis \& Problem Solving, Writing Effectiveness, Writing Mechanics, Scientific \& Quantitative Reasoning, Critical Reading \& Evaluation, and Critique an Argument to help you pinpoint specific areas that may need improvement. Internal analyses, which you can pursue through indepth sampling, can help you generate hypotheses for additional research.

While peer-group comparisons will be available in the coming year, the true strength of peer learning comes through collaboration. CLA+ facilitates collaborative relationships among our participating
schools by encouraging the formation of consortia and hosting periodic web conferences featuring campuses doing promising work using CLA+.

Our professional development services shift the focus from general assessment to the course-level work of faculty members. Performance Task Academies-two-day hands-on training workshops-provide opportunities for faculty to receive guidance in creating their own CLA+-like performance tasks, which can be used as classroom or homework assignments, curriculum devices, or even local-level assessments. More information is available on the Events page of the CAE website (www.cae.org).

CAE staff can also provide institutions with workshop sessions geared toward making use of your student data file. In these sessions, CAE researchers will collaborate with institutional staff to find ways to dig deeper into student results to answer questions about students' performance on CLA+, and identify areas of strength or weakness. To arrange for one of these sessions, please email clateam@cae.org.

Through the steps noted above, we encourage institutions to move toward a continuous system of improvement stimulated by CLA+. Our programs and services - when used in combination-are designed to emphasize the notion that, in order to successfully improve higher-order skills, institutions must genuinely connect their teaching, learning, and assessment practices in authentic and effective ways.

Without your contributions, CLA+ would not be on the exciting path that it is on today. We look forward to your continued involvement!
APPENDIX O: CAE BOARD OF TRUSTEES AND OFFICERS
CAE Board of Trustees and Officers
ROGER BENJ AMIN
President \& Chief Executive Officer
Council for Aid to Education
J AMES HUNDLEY
Executive Vice President \& Chief Operating Officer
Council for Aid to Education
KATHARINE LYALL
Board Chair
Council for Aid to Education
President Emeritus
University of Wisconsin System
RICHARD ATKINSON
President Emeritus
University of California System
DOUG BENNETT
President Emeritus
Earlham College
RUSSELL C. DEYO
Retired General Counsel \& Executive Committee Member
J ohnson \& J ohnson
RICHARD FOSTER
Executive in Residence
Yale Entrepreneurial Institute
RONALD GIDWITZ
Chairman
GCG Partners
EDUARDO MARTI
Vice Chancellor for Community Colleges, Emeritus
The City University of New York
RONALD MASON, JR.
President
Southern University System
CHARLES REED
Chancellor Emeritus
California State University
MICHAEL RICH
President \& Chief Executive Officer
RAND Corporation
HARVEY WEINGARTEN
President \& Chief Executive Officer
Higher Education Quality Council of Ontario
FARRIS W. WOMACK
Executive Vice President \& Chief Financial Officer, Emeritus
The University of Michigan

Council for Aid to Education

215 Lexington Avenue
Floor 16
New York, NY 10016

[^0]: ${ }^{1}$ Combined SAT Math and Critical Reading, ACT Composite, or Scholastic Level Exam (SLE) scores on the SAT Math + Critical Reading scale. Hereinafter referred to as Entering Academic Ability (EAA).

[^1]: ${ }^{2}$ As with the example provided for student-level CLA+ scores, the coefficients provided here are for illustrative purposes only. CLA+ value-added modeling coefficients will be provided to participating schools following the close of the spring 2014 CLA+ administration.

